Estimates of mitral-aortic angle measurement errors in 2D compared to 3D echocardiography

Federico Veronesi ${ }^{1}$, Enrico G Caiani ${ }^{2}$, Cristiana Corsi ${ }^{1}$, Claudio Lamberti

${ }^{1}$ DEI, Alma Mater Studiorum - Università di Bologna, Italy
${ }^{2}$ DEIB, Politecnico di Milano, Italy

Methods

Mitral-Aortic Angel in 3D
On the acquired 3 D datasets, A0A and mitral annuli were traced at end-diastole using custom software. Following the procedure presented in [3], 20 points on MA and 24 points on AoA were identified on evenly rotated cross-sectional planes centered on MV and AV. Manual correction was applied when necessary. Identified points were interpolated using cubic splines representing MA and the three parts of AoA pertaining to right, left and noncoronary sinuses (figure 2). Best fitting plane for each valve was computed using least square minimization. Finally, 3D MAA was computed as the angle between the two fitting planes:
$M A A=\cos ^{-1}\left(\hat{n}_{M A} \cdot \hat{n}_{A O A}\right)$
where $\hat{\mathrm{n}}_{\mathrm{MA}}$ and $\hat{\mathrm{n}}_{\text {AoA }}$ are the normal to the planes fitting MV and AV, respectively.

Mitral-Aortic Angel in 2D
From the same 3D datasets, several 2D cut-planes were extracted in order to simulate bidimensional acquisitions. The reference (i.e., correct) 3-chamber ($3-\mathrm{ch}$) view was defined as the slicing plane orthogonal to MV and AV planes and passing through the MA saddle-horn. To simulate incorrect 3-ch view identification the 3D data was sliced: 1) using 20 translated planes (1 mm step) on both sides of the reference 3 -ch view and 2) using 40 rotated planes 2 degree step apart from the reference 3-ch view around MA saddle point (figure 3). The intersection of the traced annuli with these planes was used to automatically identify anterior MA, posterior MA and right coronary sinus AoA points, needed to measure MAA in 2 D .

Statistical analysis

Results are expressed as mean value \pm standard deviation. Comparisons between 3D MAA and 2D MAA measurement were performed using paired student t -test. Differences were considered significant for $\mathrm{p}<0.05$

Planar view of MA and AoA with the 20 planes parallel to the reference 3 ch view (left) and the 40 planes rotated 20° clockwise and counter clockwise. Blu line is the MA, multicolour line is the AoA.

Results

Results are expressed as mean value \pm standard deviation. Measurement of MAA was feasible in all the subjects. On average, 3 D MAA was $134.7^{\circ} \pm 9.2^{\circ}$ while 2D MAA on the reference 3 chamber view was $137.3^{\circ} \pm 12.0^{\circ}$. No significant differences were found among these two measurements. Correlation analysis between 3D MAA and 2D MAA on 3 -chamber view showed a Pearson correlation index of $\mathrm{R}=0.696$ with a mean difference of $2.6 \pm 8.6^{\circ}$.
 interpolation. Note that MA is saddle-shaped
while AoA is crown-shaped.

2D MAA measured on translated planes ($\pm 10 \mathrm{~mm}$) ranged from $127.3^{\circ} \pm 15.5^{\circ}$ to $158.1^{\circ} \pm 16.9^{\circ}$, while on rotated planes $\left(\pm 40^{\circ}\right)$ ranged from $133.8^{\circ} \pm 10.7^{\circ}$ to $148.3^{\circ} \pm 16.8^{\circ}$. 2D MAA was significantly different (paired t -test, $\mathrm{p}<0.05$) from 3D MAA already starting from translation greater than 1 mm and rotation greater than 10° (figure 4). Correlation analysis between 3D MAA measurement and each one of the 2D MAA measurements resulted in best correspondence at +1 mm for translated plane ($\mathrm{R}=0.744$, mean difference $=-0.09 \pm 7.91^{\circ}$) and at $+16^{\circ}$ clockwise for rotated planes ($R=0.8$, mean difference $=0.86 \pm 6.34^{\circ}$).
 Distance from translated plane to 3 -chamberview (mm) Differences between $3 D$ MAA (red line) and 2D MAA on 3 -ch parallel planes (left) and on 3 -ch rotated planes (right). Error bars reperesent standard devietion. Dots on top on the plots indicate statisticicaly
significant differences between $3 D$ and 2 measurements. It is possibie to observe that differences start at Imm for translated planes and from 10° for rotational planes.

Conclusions

MAA is a parameter which assessment can be helpful for the prevention of systolic anterior motion and to characterize mitral-aortic coupling. Our results showed that despite good correlation between MAA measurement on 2D reference 3-ch cut-plane and 3D volumetric data, slight misalignment of the cut-plane (i.e, in a clinical scenario of the 2D scan plane) from the ideal 3 -ch view leads to significant differences in MAA. Consequently, 3D echocardiography should be preferred to 2 D for the assessment of the angle between MV and AV .

