Automated Frame-by-Frame Segmentation and Non-Rigid Registration of MRI Myocardial Perfusion Data at Rest and Stress

<u>G. Tarroni^{1,2}</u>, A.R. Patel², P.F. Antkowiak³, F.H. Epstein³, C.M. Kramer³, C. Lamberti¹, R.M. Lang², V. Mor-Avi², C. Corsi¹

¹University of Bologna, Bologna, Italy ²University of Chicago, Chicago, Illinois, USA ³University of Virginia, Charlottesville, Virginia, USA

<u>Computer-Assisted Radiology and Surgery</u> Berlin (Germany), June 22-25, 2011

Background	Aim	Image Acquisition	Image Analysis	Results	Conclusion
Background	ł				

- Quantification of first-pass myocardial perfusion from CMR images relies on the definition of myocardial regions of interest (ROIs)
- This is usually achieved by manually drawing a ROI in one frame and then adjusting its position on subsequent frames
- In case of *out-of-plane* motion the ROIs need to be redrawn to match the changing shape of the myocardium
- This methodology is tedious, time-consuming and potentially inaccurate

Example of MRI perfusion image sequence

Background	Aim	Image Acquisition	Image Analysis	Results	Conclusion
Aims					

- Develop a technique for automated identification and non-rigid registration of myocardial ROIs as a basis for perfusion quantification
- Validate this technique against conventional manual analysis both at rest and during vasodilator stress, which is routinely used to induce perfusion defects in areas of the myocardium affected by coronary stenosis

Background	Aim	Image Acquisition	Image Analysis	Results	Conclusion
Image Acqu	uisition				

- Siemens scanner (1.5T Avanto or Sonata)
- ECG-gated short -axis images at 3 levels of the left ventricle
- First pass of a Gd-DTPA bolus (0.075 mmol/kg, 4 ml/sec)

Image Acquisition Protocol

Hybrid gradient echo - echo planar imaging sequence

- a nonselective 90° saturation pulse + 80 ms delay
- voxel size ≈ 2.8 x 2.8 mm, slice thickness = 8 mm
- acquisition time ≈ 80 ms per slice, ≈ 1 min total; TR ≈ 5.9 ms, TE = 1.3 ms

Background Aim Image Acquisition Image Analysis Results Conclusion

Best Frame Selection for Myocardium Segmentation

- Manual placement of a seed point in the LV cavity
- Automatic selection of the "best" frame for segmentation step in the perfusion data sequence

Best Frame Selection for Myocardium Segmentation

- Manual placement of a seed point in the LV cavity
- Automatic selection of the "best" frame for segmentation step in the perfusion data sequence

Best Frame

Frame at which Cavity Intensity reaches 95% of Cavity Amplitude

Background Aim Image Acquisition Image Analysis Results Conclusion

Best Frame Selection for Myocardium Segmentation

- Manual placement of a seed point in the LV cavity
- Automatic selection of the "best" frame for segmentation step in the perfusion data sequence

Best Frame

Frame at which Cavity Intensity reaches 95% of Cavity Amplitude

Endocardium Segmentation

Automated detection of the LV endocardial boundary:

• Statistical level-set algorithm based on the Gaussian noise distribution in MRI images applied to the reference frame

$$l(I,C) = \varepsilon \cdot lenght(C) + \int_{\Omega_i(C)} log \ p(I) dx dy \ + \int_{\Omega_o(C)} log \ p(I) dx dy$$

Variables Definition

- 1 = functional to be maximized
- C = contour during evolution
- $\Omega_{i/o}$ = in-out domains
- p(I) = Gaussian distribution
- I = gray level intensity image
- Selective Curvature-based regularization motion

Image Analysis

Results

Conclusior

Endocardium Segmentation

Initial Curve

Statistical Segmentation

Regularization

Automated detection of the LV epicardial boundary:

• Edge-based Malladi-Sethian level-set algorithm applied to the reference frame that searches the image from the endocardium outwards

$$\frac{\partial \Phi}{\partial t} = g(\epsilon K - 1) |\nabla \Phi| + \nu \nabla g \cdot \nabla \Phi$$

with adequate boundary contidions and initial condition $\Phi_0(x,y) = \Phi_{endo}(x,y)$

- Curvature-based regularization motion

Background Aim Image Acquisition Image Analysis Results Conclusion

Non-rigid Registration

Non-rigid registration is achieved by a multi-scale extension of 2D normalized cross-correlation to compensate for respiratory motion

Original Template

Frame t

Registration Steps

1. Definition of Original Template

Non-rigid Registration

Non-rigid registration is achieved by a multi-scale extension of 2D normalized cross-correlation to compensate for respiratory motion

Image Analysis

esults

Conclusion

Non-rigid Registration

Non-rigid registration is achieved by a multi-scale extension of 2D normalized cross-correlation to compensate for respiratory motion

Quantification of contrast dynamics

The LV myocardium is divided into 16 wedge-shaped segments starting from a manually placed reference point

Pixel intensity is measured in each segment over time, resulting in contrast enhancement curves

Performance Evaluation

The technique was tested on 15 patients both at rest and during adenosine stress (*i.e.* 90 image sequences)

An experienced interpreter manually traced myocardial boundaries onto all image sequences, allowing the extraction of contrast enhancement curves used as reference

Validation

- Qualitative: visual assessment of boundaries position
- Quantitative: frame-by-frame comparison of mean pixel intensity in each segment between automated and manual analysis

Background

ge Analysis

Results____

Conclusion

Endocardial Detection

Required time \approx 4 s

Background

Image Analysi

Results

Conclusion

Epicardial Detection

Required time \approx 4 s

Image Analysi

Results

Conclusion

Non-rigid Registration

Without registration

With registration

Required time \approx 12 s

Background

Image A

hage Acquisition

Image Analysis

Results

Conclusion

Contrast-enhancement Curves

Extracted curves showed the typical pattern of first-pass perfusion and featured low noise levels both at rest and stress

Automated vs Manual: Bland-Altman Analysis

Mean intensity (manual, automated)

Bias = 1.18 LOA = 11.60 Bias = 0.31 LOA = 11.58

Automated vs Manual: Linear Regression & Correlation

Background	Aim	Image Acquisition	Image Analysis	Results	Conclusion
Limitatio	ns				

Limitations of the proposed approach:

- Very low spatial resolution
- Very thin myocardium (≈ 1 pixel width)
- Huge changes in shape of the myocardium throughout the sequence

011
or

- We developed an automated technique to quantify intramyocardial contrast on CMR images using noise distribution segmentation and non-rigid multi-scale registration
- Dynamic detection of myocardial segments and quantification of intra-myocardial contrast using this approach is feasible and fast compared to conventional manual tracing
- This approach results in regional contrast enhancement curves with excellent noise levels, which showed high levels of agreement compared to curves extracted by manual analysis